70 research outputs found

    Enhancement of second harmonic generation in one-dimensional nonlinear photonic-crystal microcavities.

    Get PDF
    A numerical iteration technique starting from the analytical solution of the fundamental wave and the second harmonic wave propagation equations in undepleted-pump approximation is presented for analysis of second harmonic generation in one-dimensional nonlinear photonic-crystal microcavities under pump light incidence at an arbitrary angle, accounting for pump depletion. Numerical results are in good agreement with experimental observation and theoretical predication by transfer matrix method. Analysis of the conversion efficiency of second harmonic generation in nonlinear photonic-crystal microcavities shows that dramatic enhancement of second harmonic generation occurs in the microcavities which have the optimal numbers of distributed Bragg reflector layers. The enhancement of nonlinear interactions is ascribed to mode resonance and localization of high intensity fundamental field, corresponding to the defect mode within the forbidden band of the photonic-crystal microcavities

    Microring-Resonator-Based Switch Architectures for Optical Networks

    Get PDF
    Integrated silicon photonics provides a promising platform for chip-based, high-speed optical signal processing due to its compatibility with complementary metal-oxide semiconductor (CMOS) fabrication processes. They are attracting significant research and development interest globally and making a huge impact on green information and communication technologies, and high-performance computing systems. Microring resonators (MRRs) show the versatility to implement a variety of network functions, compact footprint, and complementary metal-oxide semiconductor compatibility, and demonstrate the viability applied in photonic integrated technologies for both chip level and board-to-board interconnects. Furthermore, MRRs have excellent wavelength selection properties and can be used to design tunable filters, modulators, wavelength converters, and switches that are critical components for optical interconnects. The research work of this dissertation is focused on investigating how to develop MRR-based switches and switch architectures for possible applications not only in optical interconnection networks but also in flexible-grid on-chip networks for optical communication systems. The basic properties and performances of the MRR switches and the MRR switch architectures related to their applications in the networks are examined. In particular, how to design and how to configure high performance, bandwidth variable, low insertion loss, and weak crosstalk MRR-based switches and switch architectures are investigated for applications in optical interconnection networks and in flexible-grid on-chip networks for optical communication systems. The works include several parts as follows. The physical characteristics of microring resonator switching devices are thoroughly analyzed using a model based on the field coupling matrix theory. The spectral response and insertion loss properties of these switching elements are simulated using the developed model. Then we investigate the optimal design of high-order MRR-based switch devices. Spectral shaping of the passbands of microring resonator switches is studied. Multistage high-order microring resonator-based optical switch structures are proposed to achieve steep-edge flat-top spectral passband. Using the transfer matrix analysis model, the spectral response behaviors of the switch structures are simulated. The performances of the proposed multistage high-order microring resonator-based optical switch structures and the high-order microring-resonator-based optical switch structures without stages are studied and compared. Two types of MRR-based switch architectures are proposed to realize variable output bandwidths varying from 0 to 4 THz. One consists of 320, 160, and 80 third-order MRR switches with -3 dB passband widths of 12.5, 25, and 50 GHz, respectively. Another one is two-stage switch structure. In the first stage there are 4 third-order MRR switches with the passband widths of 1 THz. In second stage, there are 80, 40, 20 third-order MRR switches with the passband widths of 12.5, 25, and 50 GHz, respectively. Their insertion losses and crosstalks in the worst cases are numerically analyzed and compared in order to show the feasibility for the architectures to be applied in flexible optical networks. MRR-based bandwidth-variable wavelength selective switch architectures with multiple input and output ports are proposed for flexible optical networks. The light transmission behaviors of a 1 by N MRR-based WSS are analyzed in detail based on numerical simulation using transfer matrix theory. Two types of N by N MRR-based WSS architectures consisting of MRR-based WSSs and MRR-based WSSs, and MRR-based WSSs and optical couplers are proposed. The performances of the proposed architectures are studied. Scalable optical interconnections based on MRRs are proposed, which consist mainly of microring resonator devices: microring lasers, microring switches, microring de-multiplexers, and integrated photo-dectors. Their throughput capacities, end-to-end time latencies, and transmission packet loss rates are evaluated using OMNet++. In summary, the research of the dissertation contributes to develop high performance, variable bandwidth, low insertion loss, and low crosstalk MRR-based optical switches and switch architectures to adapt to dynamic source allocation of flexible-grid optical networks

    Research on a lightweight electronic component detection method based on knowledge distillation

    Get PDF
    As an essential part of electronic component assembly, it is crucial to rapidly and accurately detect electronic components. Therefore, a lightweight electronic component detection method based on knowledge distillation is proposed in this study. First, a lightweight student model was constructed. Then, we consider issues like the teacher and student's differing expressions. A knowledge distillation method based on the combination of feature and channel is proposed to learn the teacher's rich class-related and inter-class difference features. Finally, comparative experiments were analyzed for the dataset. The results show that the student model Params (13.32 M) are reduced by 55%, and FLOPs (28.7 GMac) are reduced by 35% compared to the teacher model. The knowledge distillation method based on the combination of feature and channel improves the student model's mAP by 3.91% and 1.13% on the Pascal VOC and electronic components detection datasets, respectively. As a result of the knowledge distillation, the constructed student model strikes a superior balance between model precision and complexity, allowing for fast and accurate detection of electronic components with a detection precision (mAP) of 97.81% and a speed of 79 FPS

    Persistence Parameter: a Reliable Measurement for Behavioral Responses of Medaka (Oryzias latipes) to Environmental Stress

    Get PDF
    Online monitoring systems provided a significant evidence for feasibility of the stepwise behavioral response model in detecting the effects of organophosphorus pesticides on movements of medaka (Oryzias latipes), being able to determine the state of indicator organisms, "no effect," "stimulation," "acclimation," "adjustment (readjustment)," and "toxic effect." Though the stepwise behavioral response model postulated that an organism displays a time-dependent sequence of compensatory stepwise behavioral response during exposure to pollutants above their respective thresholds of resistance, it was still a conceptual model based on tendency only in analysis. In this study, the phenomenon of bacterial persistence was used to interpret the relationship between the stepwise behavioral response model and the environmental stress caused by both exposure time and different treatments. Quantitative measurements of the stepwise behavioral response model led to a simple mathematical description of the threshold switch, which evaluated the effects of environmental stress on behavioral responses to decide the tendency. The adjustment ability correlated to "persisters (p)" is very important for test individuals to overcome the "threshold" from the outside environmental stress. The computational modeling results suggested that "persister (p)," as described in the general equations of bacterial persistence model in changing environments, illustrated behavior acclimation and adjustment (or readjustment) clearly. Consequently, the persistence parameter, p, was critical in addressing for medaka to be adapted to fluctuating environments under different environmental stress
    • …
    corecore